Roll	No. Total No. of Pages : 02
Total No. of Questions : 18	
B.Tech.(CE) (2018 Batch) (Sem.–3) MATHEMATICS-III (TRANSFORM & DISCRETE MATHEMATICS) Subject Code : BTAM-301-18 M.Code : 76373	
Time	: 3 Hrs. Max. Marks : 60
 INSTRUCTIONS TO CANDIDATES : SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions. SECTION-C contains THREE questions carrying TEN marks each and students 	
	have to attempt any TWO questions.
	SECTION-A
Write briefly :	
1.	Define gradient of a scalar point function.
2.	If $F = (x + y + 1) i + j - (x + y) k$. Show that <i>F</i> , <i>curl F</i> = 0
3.	Define Laplace transform
4.	Write the relation between Laplace and Fourier transform.
5.	Represent $f(y)$ sin 2t, 2 / t < 4 / and 0 otherwise, in terms of unit step function.
6.	Define Solenoidal and irrotational fields.
7.	State convolution theorem of Fourier transform.

- 8. State Stokes theorem.
- 9. Write Euler's formula of Fourier series.
- 10. Write Gibbs phenomenon.

(S2)- 640

Download all NOTES and PAPERS at StudentSuvidha.com

SECTION-B

- 11. Find the values of a and b such that the surfaces $ax^2 byz = (a + 2)x$ and $4x^2y + z^3 = 4$ cut orthogonally at (1, -1, 2).
- 12. Apply Convolution theorem to evaluate the inverse Laplace transform of :

$$\frac{s^2}{(s^2 \square a^2)(s^2 \square b^2)}$$

13. Find the Fourier sine transform of $e^{-|x|}$. Hence show that

$$\int_0^{\square} \frac{x \sin mx}{1 \prod x^2} \, dx \, \square \frac{e^{\square m}}{2}, \ m \square 0$$

- 14. Apply Green's theorem to evaluate $\int_C [(2x^2 y^2)dx + (x^2 + y^2)dy]$, where C is the boundary of the area enclosed by the x-axis and the upper-half of the circle $x^2 + y^2 = a^2$.
- 15. If A and B are irrotational, prove that $A \times B$ is solenoidal.

- **SECTION-C** 16. Verify Gauss divergence theorem for $F = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$ taken over the parallelepiped 0 | x | a, 0 | y | b, 0 | x | c.
- Find the Fourier cosine series of the function f(x) = 4x in 0 < x < 4 Hence show that 17.

$$\frac{1}{r \square 0 (2r \square 1)^2} \square \frac{2}{8}$$

18. a) Use Lapized transform method to solve :

$$\frac{d^2x}{dt^2} \Box \frac{2}{dt} \Box x \Box e^t$$

With $x = 2$, $\frac{dx}{dt} \Box \Box t$ at $t = 0$.

b) Find the directional derivative of $f = x^2 - y^2 + 2z^2$ at the point P (1, 2, 3) in the direction of the line PQ where Q is the point (5, 0, 4). Also calculate the magnitude of the maximum directional derivatives.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-76373

(S2)-640

Download all NOTES and PAPERS at StudentSuvidha.com